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Abstract 

A fast numerical algorithm is presented for calculating 
the TDS correction to Bragg peaks recorded in time- 
of-flight neutron diffraction studies on single crystals. 
The algorithm allows two average sound velocities, 
together with the structural parameters, to be treated as 
free parameters in a refinement program. The correction 
does not require, therefore, a prior knowledge of the 
elastic constants of the sample. The model is tested on 
a simulated set of reflection data. 

1. Introduction 

In any X-ray or neutron diffraction experiment, in which 
the aim is to determine the structure of a crystalline 
sample, some parasitic scattering is measured together 
with the Bragg scattering. Some of the parasitic scatter- 
ing can be subtracted as background, but this is not the 
case for the scattering by acoustic phonons (i.e. thermal 
diffuse scattering, TDS). The TDS scattering is situated 
just under the Bragg peak and only a part of it may be 
subtracted. It can be reduced by making measurements 
at low temperature but the simplest procedure is to 
calculate the TDS contribution using the known elastic 
constants of the crystal. The first such calculation was 
made many years ago by Nilsson (1957) for X-ray 
diffraction, assuming an ~ scan and an infinite slit 
height at the detector. Later, other authors improved the 
Nilsson correction; for example, Cooper & Rouse (1968) 
considered a finite slit height and also the case of an 
w-20 scan. For neutron diffraction, the TDS correction 
is more complicated than for X-rays, depending on the 
ratio/3 of the sound velocity in the crystal to the neutron 
velocity. In the case of the angular dispersive method of 
neutron diffraction, the correction is similar to that for 
X-rays if/3 _< 1, but is different for/'3 > 1 because TDS 
is then forbidden in certain regions of reciprocal space 
(Willis, 1970; Cooper, 1971). The TDS correction also 
depends on # in wavelength-dispersive (time-of-flight) 
neutron diffraction but here the value of/3, for which the 
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forbidden regions exist, in turn depends on the ratio 
between the sample-to-detector flight path and the total 
flight path (Willis, 1986; Popa, 1987a). In a recent paper 
by Popa & Willis (1994) [referred to below as PWl], 
many aspects of TDS in time-of-flight (TOF).diffrac- 
tometry have been clarified and an analytical formula 
for the corresponding differential scattering cross section 
has been derived. This calculation was based on a model 
using two sound velocities, representing the velocities 
(averaged over all directions) of the longitudinal and 
transverse modes of vibration. Starting with this cross 
section, we shall calculate in the present paper the TDS 
correction of the Bragg peaks, as measured by TOF 
single-crystal diffractometry. A fast numerical algorithm 
is used, in which the two sound velocities, together with 
the structural parameters, are treated as free parameters 
in a refinement program. Thus, the TDS correction does 
not require any prior knowledge of the elastic constants. 
Our model is tested on a simulated set of reflection data. 

For polycrystals, a numerical algorithm for the TDS 
correction of time-of-flight diffraction patterns has been 
described by Cole & Windsor (1980). They used the 
same two-velocities model as in the present paper. 
More recently, Wilson (1995) proposed an empirical 
method, independent of any model, to subtract the TDS 
contribution in time-of-flight diffractometry. The method 
depends on the observation that the TDS is separated 
from the Bragg scattering at points sufficiently far from 
the Bragg peak. Wilson used Gaussians to represent 
the two distributions and yet the TDS is often strongly 
asymmetrical. We believe that the direct calculation of 
TDS remains the safest way of correcting the diffraction 
peaks. 

2. Integration window and general 
expression for the TDS correction 

The integrated intensity of the diffraction peak can be 
written as 3 = 3B+3 r = ~B(1 +t~) ,  where the suffixes B 
and T denote Bragg and TDS and the ratio c~ (= 2r/2B) 
is the correction that we want to calculate. 
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538 CORRECTION FOR TDS IN TOF NEUTRON DIFFRACTION 

Let us suppose that the TOF diffractometer is 
equipped with a position-sensitive detector and denote 
by t the time of flight and by u and v the coordinates 
on the detector surface in and normal to the diffraction 
plane, respectively. Let us delimit on this surface a 
rectangular area of dimensions (2u 0, 2v0), centred on 
the Bragg peak position (u B, VB), which is large enough 
to include all Bragg scattered neutrons. Denoting by 
l(t, u, v) the count rate in a given time-position channel, 
we form the following sums: 

VB + vo UB + u o  

l ( t ,u)  = E l ( t ,u ,v) ;  l(t) = E l( t ,u) .  
V ~ V B - -  V 0 IA B - -  U 0 

(la,  lb) 

I(t) is the total intensity measured in the time channel 
t. The measurements are made between the time limits 
t B - t b and t B + t b, where t B is the time at the maximum 
of the Bragg peak. Following a procedure such as 
that used by Lehmann & Larsen (1974) to determine 
appropriate values of t, and t b, the integrated intensity 
of the measured diffraction peak is then 

tB + ta 

3 =  E l ( t ) - -{[( th+t~)/2][l( tB-- tb)+l( tB+to)]} .  (2) 
t B - -  t b 

The term in square brackets in (2) is just the uniform 
background obtained by fitting a straight line to the 
background recorded at t o and t b. 

The sequence of operations given above to extract 
the background and to obtain the integrated intensity is 
not unique. This sequence could be changed to subtract 
the background from a one-dimensional distribution l(u) 
or l(v), or from a two-dimensional distribution, e.g. 
l(t, u). Obviously, the TDS correction depends on the 
shape and volume of the three-dimensional window 
in the space of measurement (in our case, the time 
of flight and the point on the detector) in which the 
integrated intensity is determined. We have chosen as 
window a rectangular parallelepiped, using the sequence 
of operations (1) and (2) to arrive at a unique algorithm 
for the TDS correction, which is independent of the 
detector type. Indeed, if the detector is position sensitive 
only in the cordinate u or is not position sensitive at all, 
the measured intensity is (la) or (lb), respectively. 

Once the window and the sequence of operations 
have been chosen, we proceed to calculate the integrated 
intensity for Bragg and TD scattering. The intensity is 
obtained rigorously by convoluting the corresponding 
differential cross section with the instrumental resolu- 
tion. However, this complicates our task considerably 
and gives little overall benefit, as the error in c~ intro- 
duced by ignoring resolution is smaller than the error 
given by using a model that assumes that all the acoustic 
modes propagate isotropically. If resolution is ignored, 
the integration is carried out directly on the differential 
cross sections for Bragg and TD scattering. In PW1, the 

TDS differential cross section was derived in terms of 
the variables y, % 6 defined as 

Y =  (tB -- t)/tB; " 7 = 2 0 - - 2 0  B = ( u -  uB)/L2; 

6 = ( v -  VB)/L 2, 

where 20 is the scattering angle (i.e. the angle between 
the incident and scattered neutrons), 0 B is the Bragg 
angle and L 2 is the distance from sample to detector. 
This cross section is 

(dcr/df2)TD s = (47r/3)(V/vc)F 2 sin 20B(KBT/M¢) 
2 

x y'~(j/c})Sj(y, 'y,  6), 
j = l  

where v c, Mr are the volume and mass of the unit 
cell, V the sample volume, F the structure factor for 
Bragg scattering, K B the Bolzmann constant and T the 
temperature. The sound velocity in the crystal is c. 
with j = 1 for the longitudinal velocity and j = 2 fo~ 
the transverse velocity. The function S~(y, 7, 6) will be 
discussed later. Denoting by (yo+yb, 2"/0; 260) the dimen- 
sions of the window in the space (y, "7, 6) corresponding 
to (t o + t b, 2u 0, 2v0), and using (1) and (2), we obtain for 
the TDS correction: 

2 
~. 3 a = (8 /3)(v,./)~B)sin 4 0 8 ~~j(KRT/McC~) 

j----l 

x "~ (y,, Yb, %, 60)" (3) 

Here AB is the Bragg wavelength and the factor 7- has the 
following form [taking into account that S ( - y )  - S(y)]: 

7- = S o + S b - (1/2)(y ° + yb)[S(Yo) + S(Yb)], 

where 

Yk 

S k = . f  S(y) dy ( k = a , b )  (4) 
0 

~'0 

S(y) = f S(y, 3')d7 (5) 
- -  ")'0 

(5 o 

S(y, 7) = f S(y, 7, 6) d6. 
- - 6 o  

Hence the problem reduces to the calculation of some 
twofold and threefold integrals of the function S(y, 7, 6). 
The integration over 6 can be performed analytically but 
the remaining integrations can only be carried out nu- 
merically. A straightforward numerical integration is not 
possible because the integrand is not defined anywhere, 
is not continuous, and even has singularities. To obtain 
a correct and fast numerical algorithm, the technique of 
isolating singularities is necessary. 
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3. The distribution SO', 7,  6) 

In PW1, we have deduced that 

S(y, 3",6) = { 1/(TrN2) for/3 < fit, 
/31MII(TrN2A 1/2) for/3 >/3,,, 

where 

N2(y, 3", 6) = A2(y, 3") + 62 

= (3" + y s in  20B) 2 + 4y 2 sin 4 0 B + 6 2, (6) 

M(y, 3') = 2 ( r / -  cos 20B)y -- (~3" 

and 

A(y, % 6) = f12M2 -- (/32u2 -- 1)N 2 

= (1 -- /329/2)3'2 

+ 4 sin 2 0 B ( 1 - /32  cos 2 0B)y2 

- 2 sin 20B(fl 2,  -- 1)3"y- (fl2/:2 _ 1)62.  

The constants ~1, ff and u are functions of the diffrac- 
tometer setting (~, 0B), where 0 B is the Bragg angle and 

is the ratio of the sample-to-detector flight path to the 
total flight path: 

7 /=  1 - 2~ sin 20B; ( = ~ sin 20B; l/2 = T]2 .at_ ~2. 

zero, on the second curve 7/ -- 0 and on the third and 
fourth fl0 =/3o" For the majority of TOF diffractometers, 
the point (08, () is in region A, where the path-length 
ratio ~ is 0.25 at zero Bragg angle and increases to 0.5 
at a Bragg angle of 90 °. The TDS correction for this case 
only will be calculated in this paper. In A, the slope of 
the line M = 0 is positive, r / >  0 and/30 >/3o" In Fig. 2, 
the thick curves show the cross section of the cone in a 
plane parallel to the (y, 7) plane and at a given value of 
6 for the three significant ranges of /3: /3,, < /3  < /3  o, 
fin </3  </30 and /3o < /3  < oc. This is a two-branch 
hyperbola that degenerates into its asymptotic lines 
(thin lines) if 6 -- 0. The points in the plane inside 
the cone, where S(y, 7, 6) is defined, are those outside 
the branches. Let us denote this domain by D(6). The 
explicit expressions of the hyperbola delimiting D(6) are 
the two roots of the equation A(y, 7, 6) = 0; we denote 
these roots by 3'+ (y, 6) and 3'_ (Y, 6) if the equation above 
is solved in the variable 3" or, alternatively, by y+(3",  6) 
and y_ (3', 6) if the equation is in the variable y. These 
roots are given in Appendix A. They are all valid for 
any diffractometer setting, but Fig. 2 is different for the 
regions B, C, D, E. For example, in D, the slope of the 
line M = 0 is negative, r/ < 0 and /30 < rio' and so 
the cross section of the cone from Fig. 2(c) will lie, for 
/'3 > rio' in the quadrants 1 and 3 in place of 2 and 4. 

Three specific values of the parameter /3 were con- 
sidered in PWI: 

/L = l / v ;  G : 1/I,1: /3o -- 1 /cos  0B. 

For /3 <_ /3,,, the function S(y, 7, 6) is defined in any 
point of reciprocal space, except at the origin (the end 
of the Bragg wave vector), where it has an infinite 
singularity. For /3 > /3~,, this function is defined only 
inside the surface A(y, 7, 6) = 0 and is singular on 
this surface. The surface is a cone of two sheets with 
the axis of the cone in the plane (y, 3'). At /3 = /3~,, 
the cone axis is normal to the line M = 0 and the 
cone angle is 7r. When/'3 increases to infinity, the cone 
angle decreases to zero and the cone axis rotates, its 
slope becoming - ( s i n  20B)/r/. The evolution with/3 of 
the cone geometry then depends on the diffractometer 
setting. 

The area encompassed by the ranges (0 < 0 B < 7r/2) 
and (0 < ~ < 1) is divided into five parts (denoted in 
Fig. 1 by A . . . .  , E) by the following four curves: 

~,(08) = 1/2; ~2(0B)= 1 / (2s in  208); 

~3(08) = 1/[4cos 2 (0 J 2 ) ] ;  

G(08) = 1/[4 s in2(0J2)] .  

On the first curve, the slope of the line M(y, 7) = 0 is 

4. The distribution S(y,'7) 

Now we can proceed to integrate S(y, 3", 6) over 6 to 
obtain Sly, 7). Standard tables of integrals give 

f dx / (a  2 + x 2) = a -1 arctan(x/a) (7a) 

1 .00 -  

0.75- 

0.50- 

C 

0.00 . 
0 15 30 45 60 75 90 

Fig. I. Different regions (A, B, C, D, E) of the diffractometer setting 
(OB, ~,) for 3 > dr .  OB is the Bragg angle and ( is the path-length 
ratio. 
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[ y---* 

0.00 
(a) 

0.10 

./ 
y-.-.. 

-0.20 
-0.10 0.00 0.10 

0.00 
y --,--4P ' 

(b) 

y -- 

-0.20 
-0.10 0.00 0.10 

(c) 

Fig. 2. The curves refer to three ranges of 3: (a) 3, < ,4 < ,':~,7; (b) 
3o < 3 < 30; (c) 30 < 3 < ~ .  [For 3 > ,3,,, the function 
S(y, 7, b) is only defined inside a cone of two sheets.] The thick 
curves show the cross section of the cone with the plane b = 
constant and the thin curves the cross section with b = 0. The 
diffractometer setting is in region A of Fig. I. 

.f dx/[( a2 + x2)(b 2 - x 2 ) l / 2 ]  

= a -  I (a 2 q_ b 2)-  I/2 

x arctan[xa-'(a 2 + b 2 ) l / 2 ( b  2 - x 2 ) - 1 / 2 ] .  

(7b) 

Using (7a) for (3 _< (3v with a = A and the limits + 6  o, 
we obtain 

S(y, "7) = A -1 (2/7r)arctan(60/A),  

where A is given by (6): 

A2(y, "7) = ('7 + Y sin 20B) 2 + 4y 2 sin408. 

For fl _> (3~,, we use (7b) with a = A and b 2 - 
[ A / ( ( 3 2 b  '2 --  1)] + 6 2, but for the limits we take 
+min(b ,  6o) in place of + 6  o because S(y, 7, 6) is defined 
only inside the cone discussed above, rain(b, 6o) is 6 o 
when (y, '7) lies in the domain D(6o) and is b when (y, "7) 
is in D(0) - D(6o). After some algebraic manipulation, 
the distribution S(y, "7) is given by 

A - '  (2/7r) arctan(6o(31MIA-' A - ' / 2 )  
for (y, "7) C D(60) 

S(y, "7) -- A -  I for (y, '7) C D(0) - D(60) 
0 otherwise. 

Here A is calculated for 6 = 6 o. S(y, '7) has an infinite 
singularity at the point (0, 0). For /3  > 3,,, it is defined 
only in the domain D(0), having a discontinuity in the 
derivative on the contour of D(6o). If 6 o is infinite, S(y, '7) 
becomes A -1 for any value of (3. This suggests that 
S(y, '7) can be written as the difference of two functions: 

S(y, "7) = S~(y,  "7) - S,s(Y, "7), 

where 

and 

S~(y,  7) = A  -1 

S~(y,'7) = I 

A - ' [ 1  - (2/7r) arctan(60/A)] 
for/~ < [3~, 

A - ' [ 1  - (2/7r) 
×arctan(6o(3lMlA -j  A-l /2 ) ]  

for (3 > (3,. 

Both S~(y,  2/) and S~(y, 7) are defined everywhere for 
(3 _< (3~,, but only in the respective domains D(0) and 
D(60) for [3 > (3v- They are continuous except for 
S~(y, '7) at the point (0,0), where it has an infinite 
discontinuity. At this point, S~(y, 7) has the value 2 /6  o 
if (3 _< (3~; for (3 > (3~,, S~(y, 7) is zero on the contour of 
D(60). The splitting of S(y, 7) into the two components 
allows S~(y,'7) to be integrated numerically,  having no 
singular point. S~(y,  7) can be integrated analytically 
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in the variable 6. For a certain range of fl, the resulting 
function S~(y) is singular at y = 0, like In(y). Isolating 
this singularity means that the numerical integration in 
y is readily performed. 

Fig. 2(a) shows that, if the intersection of the hyperbola 
with the -y axis is over the line 7 = 3'0, then Sr(y ) 
is also zero in the range (0,y~). This happens when 
ri~,r/ < ri < fir/, where ri~,r/ is defined by 

5. SO,) and St, for diffractometer setting A 

The use of (5) to calculate S(Y) from S(Y, 7) is correct 
only for fl _< ri.. For/3 > ri., one or both integration 
limits +7o must be changed at the domain borders of 
S(Y, 7). At the points y where the limits change, the first 
derivative of S(y) is not continuous. As S~(y,  7) and 
S~(y, 7) are defined on different domains, these points 
are different for S~(y) and S~ (y). 

For S~(y),  there are two discontinuity points, Yl0 and 
Y2o (only the positive y axis is considered), and for the 
diffractometer setting in A these are given by 

Y,o = lY- (7O, 0)1; Y20 = lY+(TO, 0)1. 

The integration of S~(y,  3') over 3' is made by using the 
standard integral 

.f dx/(a 2 -}- X2) 1/2 -- ln[x + (a 2 + x2) 1/2] 

rib, r/ --- ('ff(~ "-]- (~))1/2/(T]2"{~) + U2¢~2) 1/2" 

We conclude that S~(y) has two or three points Of 
discontinuity if/3 > ri~ and y, < y~ < Y2" 

The explicit expressions for S~(y) and Sr(y) are 
given in Appendix B. There are six and eight cases, 
respectively, which are distinguished from one another 
by the value of/3. The long- and short-dashed curves 
in Fig. 3 show the profiles of S~  (y) and $6 (y) for four 
characteristic regions of ft. The full curve is just S(y). 

Knowing the expressions for S~(y) and Sr(y) and 
recalling that f dy In y -- - y (  1 - In y), it is straightfor- 
ward to write down the explicit expressions for S~k and 
Srk (k - a, b) using (4). For economy of space, these 
expressions are not given here. We only specify that, 
if the interval (0,yk) contains points of discontinuity 
for S~(y) and S~(y), the numerical integration must 
be made separately in each continuity interval to avoid 
numerical errors. 

with x = 7 + Y sin 20 B and a = 2y sin 2 08. For ri < ri~,, 
the resulting function is singular in y = 0, like -In(y). By 
algebraic manipulation, such a term is isolated and the 
rest then raises no problem for numerical integration. For 
fl > fir/, So~(y ) has the remarkable behaviour of being 
constant in the interval [0, Yl0 ]. Finally, S~(y) is zero 
for y > Y20 if fl > rio" 

For S~ (y), the situation is more complex. An analyt- 
ical integration of S~ (y, 7) over 3' is no longer possible 
and S~(y) must be obtained by numerical integration. 
For fl > fl~,, S~ (y) also has two points of discontinuity 
for the derivative: 

Yl = lY- (%, 60) l; Y2 = lY+(%,60)1 

with the condition that y+ (7O, f0) exists. This condition 
is fulfilled only if ri <_ fla, where fl~ is defined by 

fl,s fie[1 + sin 2 2 2 1/2 = 0 ~ ( 7 o / ¢ ) ) 1  

6. The limiting value of/3 for a zero TDS correction 

For fl > fir/, the function S~(y) is constant in the 
interval [0, Yl0], and as a consequence there is a possible 
value tim of fl beyond which the TDS correction is zero. 
Two conditions must be fulfilled for the existence of ri m: 
Y0 -< Yl0 and Y0 -< Y,, where Y0 = max(y,,, Yb)" With 

p = r/(717o - Y0 sin 20R), q = 7o - Y0 sin 208, 

n = 2y 0 sin 2 08, 

the first condition could be fulfilled only if p > 0. In 
this case, the condition gives 

fl ~ film -- p--I {pq + u2n2/2 q_ [(pq + u2n2/2)2 
_ p 2 ( q 2  q_ n2)]1/2}. 

For fl >_ fl~, the hyperbola in Fig. 2(c) lies under the 
line -y = -3'o and S~(y) is zero. As can be seen from 
Figs. 2(b) and (c), for fl, < fl < fl~, S~(y) is also zero 
in the range (0, y.) [or (O, yt) if % G -7O], where by 
(Y., 3'.) we have denoted the coordinates of the point in 
which the condition "7_(Y, 6o) = 3'+(Y, ~0) is fulfilled. 
These coordinates are given by 

t~O(fl2~'/2 -- 1) 1/2 t~O(f127] -- 1) cot O B 
y, = ; % = _ 

2 sin 2 0 e (/32712 - 1) I/2 

The second condition always gives 

fl >- ri2m = flo (1 + n 2162)il2 

and then 

/3,, = m ~ ( ~ l ,  ., ri2~). 

If p _< 0, a limiting value ri, n does not exist and the TDS 
correction must be made for any value of/3. 
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7. The computer routine 

The algorithm developed in this paper has been used in 
a computer subroutine (in Fortran), which needs as input 
data the diffractometer setting parameters, the window 
dimensions of the peak and two values of the sound 
velocity in the crystal. For these two sound velocities, the 
subroutine yields two output values of the parameter 7- in 
(3). Most of the execution time is spent in evaluating the 
single and double integrals, for which we have employed 
a Gauss-Legendre method. Numerous tests have shown 
that four integration nodes ensure good precision for 
the single integrals. The relative error introduced in 7- 
by decreasing the number of nodes from l0 to 4 was 
smaller than 0.3%. This maximum error occurred with 

fl just larger than /3 v when b 0 was taken as smaller 
than 70. The error decreases with increasing /3, and is 
also less if 6 o > 70 (which often happens in practice). 
This is because the weights of S6k decrease in these 
cases. The small number of integration nodes makes the 
routine a fast one. It will be twice as fast if, in place 
of the flight times y~ and Yb, we take the single value 
Yo = (Y~ + Yb) /2 ,  which is possible when Ya and Yb are 
close to one another. We believe that this high-speed 
routine can be used in least-squares programs to refine 
two (or one) average sound velocities when these are 
not known beforehand from Other experiments. 

The factor 7- calculated with this routine is shown in 
Fig. 4 as a function of the parameter/3 when one of the 
input parameters is varied. In Fig. 4(a), Y0 was varied 

41/, ̀  4 
S(Y)3.[~ ' S(Y)3. 

4I 2 ~ 2- 

| " " ~ . .  x 

0.00 0.05 0.10 Y 
(a) 

0 
0 . 0 0  O.bs . . . . . . . .  o . i o  Y 

(b) 

S(Y)a. 

0.00 0.05 0.10 Y 
(c) 

. 

° 

s(y) 
3- 

0 'l " - " 7 " - ~ ' - ' - -  
0 . 0 0  0 . 0 5  

Y 
ca) 

0/10 

Fig. 3. The profiles Soo(y) (long-dashed curves), S6(y) (short-dashed curves) and S(y) [= S~(y) -S~ty)] (full curves) for ( = 0.2, 0B = 45 °, 
70 = 0.03, 60 = 0.02 and for the four characteristic ranges of ~: (a) 13 < /3~,; (b) ~3,, < ,'3 < ,3,~: (c) ,3, I < ,3 < .30; (d) do < d < oc. 
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and, in Fig. 4(b), 08 was varied. Discontinuity points 
in d ' r / d ~  can be observed, as well as the existence, in 
some cases, of limiting va lues /3  m. 

8. Test of the a l g o r i t h m  

Using the present algorithm and a simulated set of  time- 
of-flight reflection data, we have tested the possibility of  
correcting for TDS without assuming prior knowledge 
of  the sound velocities. 

A total of 103 integrated intensities of the diffraction 
peaks of a nickel monocrystal  was generated using 

O.IO- 

T 

0.08- 

0,06- 

0,04- 

0.02- 

0 . 0 0  
0 .1  

t 
i 
I l 

tt 
I 
I, 
t\ 

. i t ' ,  

. . . . . . . . .  

I 10 o 100 
P 

(a) 

0 . 1 0  

"iS" 

0.08 

0,06- 

0.04- 

0.02- 

I 
' - - - - - - - - - - - - - - - - - - - - -  4 . t  

t 
l :  
t~ 

I 

b 

0,00 , . . . . . . . . .  . . . .  ~ . . . .  " . . " . . " : .~  
0.1 1 10 ~ 100 

(b) 

Fig. 4. The parameter 7- as a function of/:~ for ( = 0.2, 70 = 0.02 and 
b0 = 0.03. In (a), 0B = 45 ° and Y0 = 0.008 (full curve), Y0 = 0.015 
(long-dashed curve) and Y0 -- 0.022 (short-dashed curve). In (b), 
Y0 -- 0.02 and 0e was varied: 20 ° (full curve), 45 ° (long-dashed 
curve) and 80 ° (short-dashed curve). 

the values of  the displacement parameter  B and sound 
velocities c I and c 2 given by Cole & Windsor (1980): 
B -- 0 .382/~ 2, c I : 5912 and c 2 ---- 3 1 4 8 m s  - I .  For 
calculating the integration limits, 2y 0, 2"70 and 2~ 0, 
we used a mosaic spread of  5 ~ and the resolution 
data of  the time-of-flight diffractometer DN2 installed 
at the pulsed reactor IBR2 in Dubna,  Russia. These 
data were published by Popa (1987b) and by Bal- 
agurov, Beskrovnyi & Popa (1987). The scattering angle 
and flight paths were 20t~ = 160 ° , L I = 24, L 2 = 

1 m. For simplicity, we ignore factors common to all 
peaks and write the integrated Bragg intensity as 71B = 
e x p [ ( - 2 B  sin 2 0B)/A 2] and the total integrated intensity 
as 7I = 71B[1 + cz(cl,c2) ]. We take the 'measured '  
integrated intensity as 71m = 71+ge(71), where cr(71) is the 
standard deviation and g is a random number,  selected 
from a Gaussian distribution with a mean of  zero and 
a dispersion of  unity. A realistic standard deviation for 
the intensity could be or(/) = 0.0111/2, giving a relative 
statistical error of  1% for the strongest peak and 3.6% 
for the weakest.  In Fig. 5, we plot, as a function of  
wavelength,  the integrated Bragg intensity, the integrated 
measured intensity and the TDS correction. As expected 
from (3), the correction assumes higher values at shorter 
wavelengths.  

Parameterized models of  the calculated integrated 
intensity 71c were fitted to the measured data 71m by 
minimizing X 2 - ( n . )  - l  ~- '~[a(3m)]--2(3m- 3c) 2, where 
nf is the number of  J(legrees of  freedom. The quality of  
fit is given by the values of  the standard quantities X 2, 

R and  R w. Four fits were carried out. 

1.0 

0.8 y 

0.6 CI ~ J ~  

0.4" 

0.2 

0 . ~  | , 1 , 1 1  | 1 ,  i r  t ' . l  I I I I I I i i  | ,  I I I I  I I I  I I 1 1 1  I 1 1  

0.0 1.0 ~0 3.0 4.0/~ 

Fig. 5. TDS correction ~ (full curve), the integrated Bragg intensity 
3~ (dashed curve) and the 'measured' intensity %n, indicated by 
dots, for the simulated set of reflection data for nickel. The full 
curve passing through the measured points is the result of the third 

,-i(3) fit ~c • 
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In the first fit, TDS was ignored, so that 2 c = 3 B. 
The results were: B = 0 .332(1) ]k  2, X 2 =  2.88, R = 
2.49, R w = 3.05%. B is 13% too low and the quality of  
fit is poor. 

The second fit was made with 3 c = 3 and TDS was 
included with the sound velocities, c I and c2, fixed at the 
values given above. The results were: B - 0.380 (1)/~2, 
X 2 - 0.96, R = 1.32, R w -- 1.76%. There is no bias in 
the estimation of  B and the fit is of  good quality. 

In the third fit, we took 3 C = 3 but with C l = C 2 as 
the second fitted parameter.  The result of  the fit was: 
B = 0.380 (5) /~2, cl = c 2 = 3 .6(2)  x 103 m s  - l  , X 2 = 
0.97, R = 1.32, Rw - 1.76%. There is no bias in B and 
the quality of  fit is the same as in the second case. The 
sound velocity differs by 11.5% from the weighted mean 
of  c l, c 2 and the curve arising from this fit is shown as 
~j(3) in Fig. 5. 

c 

Finally, in the fourth fit, c I and c 2 were treated 
as independent fitted parameters.  The result was: B = 
0.378 (5)/~2, cl = 2.3 (3) x 103, c 2 = 8 (5) x l0  B m s - l ,  
X 2 -- 0.98, R = 1.32, R w = 1.76%. The value of  B and 
the quality of  fit are as good as those from the third fit, 
but the two sound velocities are not well determined. 

We conclude that the algorithm described above can 
be used successfully in calculating the TDS correc- 
tion to Bragg peaks recorded by time-of-flight neutron 
diffraction. The algorithm allows two sound velocities 
(representing average longitudinal and transverse ve- 
locities), together with the structural parameters,  to be 
treated as free parameters in a refinement program. It 
may turn out that an equally good refinement is obtained 
by using a single parameter  to represent the overall 
sound velocity in the crystal. 

A P P E N D I X  A 
The roots of equation A0,  , % 6) = 0 

When solved in 7, the roots are 

7+(y,  6) = [sin 2 0 8 ( / 3 2 , -  1)y + PI/2](1 - / 3 2 . 2 ) - I  

3'_ (Y, t~) -- [4 sin 20B(1 -- f12 COS 20B)y2 _ (/32/,,2 _ 1 )62]  

x [sin 208(/32. - 1)y-t- p l / 2 ] - l ,  

where 

a = ( f12v2  - -  1)[sin 20BY 2 + (1 - f12 COS 2 0B)62]. 

A P P E N D I X  B 
The profiles Soo(y) and S6(y) 

We use the notation 

R(y) = ln{[(% + y sin 208) + A(y, % ) ] / ( 2  sin 2 0e) } 

R, - In([ 1 - f12,2[/{[X2 + (1 - / 3 2 , 2 ) 2 1 1 / 2  n t- X}) 

R 2 = l n ( X / { [ X  2 + (1 -- f l2¢2)2]1/2 _ (1 - / 3 2 ; 2 ) } ) ,  

where 

X --- /32 .¢  -F (32/`,2 -- 1) 1/2 

S ~ ( y )  is then defined differently in the six regions of  
the parameter  /3: 

(i) 0 < /3 _< /3. 

S ~ ( y ) - - 2 1 n y + R ( y ) + R ( - y ) ,  O _ < y < o o  

(ii) fl,, < /3 < /3, 

S ~ ( y )  = - 2 1 n y  + R(y) + R ( - y )  + R l + R 2, 

0 < y < Ym 

Sc~(y ) = - l n y  + R ( - y )  + R2, Ym -< Y < Y20 

Soo(y ) = - 2  In y + R(y) + R ( - y ) ,  Y20 <- Y < oo 

(iii) /3 = /3,~ 

Sc~ (y) = - I n  y + R ( - y )  + R 2, 0 = Y~0 --< Y < Y20 

S ~ ( y )  = - 2  In y + R(y) + R ( - y ) ,  Yzo <-- Y < oo 

(iv) /3~ < /3 < /30 

S ~ ( y )  = R  2 - R  l, 0 < y < y l o  

Soo(y ) = - l n y  + R ( - y )  + R 2, Y~o <- Y < Y2o 

Soo(y ) = - 2 1 n  y + R(y) + R ( - y ) ,  Y2o <- Y <- oc~ 

where 

P -- (/32/e2 - 1)[4 s in  4 0 B y  2 q- (1 -- /32.2)62] .  

Solving for y, we have 

y + ( 7 ,  6) -- [C0SOB(/32. - 1)")' --}- QI /2]  

x [2 sin 0e(1 - / 3 2  cos 20B)]-I  

Y _ ( 7 ,  6) = [(1 - / 3 2 . 2 ) 3 ` 2  _ (/32v2 _ 1)62] 

x {2sinOs[cosOB(f1271- I )7  + Q , / 2 ] } - I ,  

( v ) / 3  = /3 0 

S oo (Y) -- g 2 - g l ,  

S oo(y ) = - I n  y + R ( - y )  + R e, 

(vi) /30 < /3 < ,~o 

S ~ ( y )  = R 2 - R I, 

S oo (y) = - l n  y + R ( - y )  + R 2, 

s ~  (y) = o, 

0 _< y < Ylo 

Y lo -< Y < Yzo = oe 

0 _< y < Ylo 

Y to -< Y < Y20 

Y20 -< Y < co. 
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The following four functions define S~(y) in eight 
ranges of/3: 

"Yo 

To(Y) = f d7 S~(y, 7); 
- -  ~'o 

7 o  

T+(y) = f d'y S̀ S (y, "y); 
"y+ (y, s0) 
-r- (v./%) 

T_ (y) = f d'yS~(y,'r); 
- -  "/'0 

- (Y,  (5o) 

T(y) = f d'), S6(y, 7). 
% (y, ,so) 

(i) /3 _< ~,  

S~(y) = To(Y ), 

(ii) /3,, < /3 < /3~,, 

S~(y) = T+ (y) + T_ (y), 

S~(y) = r_(y),  

S~(y) = To(Y ), 

(iii) /3 = /3~,,, 

S~(y) = T_ (y), 

S~(y) = T0(y ), 

(iv) /3.o < /3 < /3o 

S~(y) = 0 ,  

Scs(y ) = T_ (y), 

Scs(y ) = T0(y), 

(v)/30 < /3 < [30 
S`s(y) = 0 ,  

S~(y) = {0; T(y) }, 

S~(y) = T_ (y), 

S`s(y) = To(Y ), 

0 < y < ~  

O < y < y l  

Y l ~ Y < Y 2  

y 2 ~ y < ~  

O = y l ~ Y < Y 2  

Y 2 ~ Y < ~  

O ~ y < Y l  

Y 1 ~ Y < Y 2  

Y 2 ~ Y < ~  

0 < y < y .  

Y . ~ Y < Y l  

Y I ~ Y < Y 2  

y 2 ~ y < ~  

(vi) [3 = [3 o 

S6(y ) = 0 ,  

S6(y ) = {0; T(y)}, 

S`s(y) = T_(y), 

(vii) /30 < /3 < /3`s 

S~(y) = 0 ,  

Scs(y ) -- {0; T(y)}, 

S~(y) = T_(y), 

S~(y) = 0 ,  

(viii)  [:1 >_ /3~ 
S`s(y) = 0 ,  

0 < y < y .  

Y . ~ Y < Y l  

yl ~ y < y 2 = ~ ,  

0 < y < y .  

Y . ~ Y < Y ~  

Y 1 ~ Y < Y 2  

y 2 ~ y < ~  

0 < y < ~ .  

In (5) to (7), {0; T(y)} corresponds to {7. <_ - % ;  
7. > - % } .  
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